3.3.32 \(\int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx\) [232]

3.3.32.1 Optimal result
3.3.32.2 Mathematica [A] (verified)
3.3.32.3 Rubi [A] (verified)
3.3.32.4 Maple [A] (verified)
3.3.32.5 Fricas [A] (verification not implemented)
3.3.32.6 Sympy [F(-1)]
3.3.32.7 Maxima [B] (verification not implemented)
3.3.32.8 Giac [F]
3.3.32.9 Mupad [B] (verification not implemented)

3.3.32.1 Optimal result

Integrand size = 25, antiderivative size = 201 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {34 a^2 \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {68 a^2 \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {272 a^2 \sin (c+d x)}{315 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {544 a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{315 d \sqrt {a+a \sec (c+d x)}} \]

output
2/9*a^2*sin(d*x+c)/d/sec(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(1/2)+34/63*a^2*sin 
(d*x+c)/d/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2)+68/105*a^2*sin(d*x+c)/d/ 
sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+272/315*a^2*sin(d*x+c)/d/sec(d*x+c 
)^(1/2)/(a+a*sec(d*x+c))^(1/2)+544/315*a^2*sin(d*x+c)*sec(d*x+c)^(1/2)/d/( 
a+a*sec(d*x+c))^(1/2)
 
3.3.32.2 Mathematica [A] (verified)

Time = 0.55 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.40 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a^2 \left (35+85 \sec (c+d x)+102 \sec ^2(c+d x)+136 \sec ^3(c+d x)+272 \sec ^4(c+d x)\right ) \sin (c+d x)}{315 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(a + a*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(9/2),x]
 
output
(2*a^2*(35 + 85*Sec[c + d*x] + 102*Sec[c + d*x]^2 + 136*Sec[c + d*x]^3 + 2 
72*Sec[c + d*x]^4)*Sin[c + d*x])/(315*d*Sec[c + d*x]^(7/2)*Sqrt[a*(1 + Sec 
[c + d*x])])
 
3.3.32.3 Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 4300, 27, 3042, 4292, 3042, 4292, 3042, 4292, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 4300

\(\displaystyle \frac {2}{9} a \int \frac {17 \sqrt {\sec (c+d x) a+a}}{2 \sec ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {17}{9} a \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {17}{9} a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {17}{9} a \left (\frac {6}{7} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {17}{9} a \left (\frac {6}{7} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {17}{9} a \left (\frac {6}{7} \left (\frac {4}{5} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {17}{9} a \left (\frac {6}{7} \left (\frac {4}{5} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {17}{9} a \left (\frac {6}{7} \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {17}{9} a \left (\frac {6}{7} \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4291

\(\displaystyle \frac {2 a^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {17}{9} a \left (\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {6}{7} \left (\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {4}{5} \left (\frac {4 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )\right )\right )\)

input
Int[(a + a*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(9/2),x]
 
output
(2*a^2*Sin[c + d*x])/(9*d*Sec[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]) + ( 
17*a*((2*a*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) 
 + (6*((2*a*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]] 
) + (4*((2*a*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x] 
]) + (4*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])) 
)/5))/7))/9
 

3.3.32.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4300
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)* 
((d*Csc[e + f*x])^n/(f*n)), x] - Simp[a/(d*n)   Int[(a + b*Csc[e + f*x])^(m 
 - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f 
*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] 
 && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[2*m]
 
3.3.32.4 Maple [A] (verified)

Time = 1.21 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.41

method result size
default \(\frac {2 a \left (35 \cos \left (d x +c \right )^{4}+85 \cos \left (d x +c \right )^{3}+102 \cos \left (d x +c \right )^{2}+136 \cos \left (d x +c \right )+272\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{315 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(83\)

input
int((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(9/2),x,method=_RETURNVERBOSE)
 
output
2/315/d*a*(35*cos(d*x+c)^4+85*cos(d*x+c)^3+102*cos(d*x+c)^2+136*cos(d*x+c) 
+272)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)
 
3.3.32.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.51 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \, {\left (35 \, a \cos \left (d x + c\right )^{5} + 85 \, a \cos \left (d x + c\right )^{4} + 102 \, a \cos \left (d x + c\right )^{3} + 136 \, a \cos \left (d x + c\right )^{2} + 272 \, a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

input
integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(9/2),x, algorithm="fricas")
 
output
2/315*(35*a*cos(d*x + c)^5 + 85*a*cos(d*x + c)^4 + 102*a*cos(d*x + c)^3 + 
136*a*cos(d*x + c)^2 + 272*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d 
*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))
 
3.3.32.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))**(3/2)/sec(d*x+c)**(9/2),x)
 
output
Timed out
 
3.3.32.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 396 vs. \(2 (171) = 342\).

Time = 0.38 (sec) , antiderivative size = 396, normalized size of antiderivative = 1.97 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (3780 \, a \cos \left (\frac {8}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) \sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) + 1050 \, a \cos \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) \sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) + 378 \, a \cos \left (\frac {4}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) \sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) + 135 \, a \cos \left (\frac {2}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) \sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) - 3780 \, a \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) \sin \left (\frac {8}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) - 1050 \, a \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) \sin \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) - 378 \, a \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) \sin \left (\frac {4}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) - 135 \, a \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) \sin \left (\frac {2}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) + 70 \, a \sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ) + 135 \, a \sin \left (\frac {7}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) + 378 \, a \sin \left (\frac {5}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) + 1050 \, a \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right ) + 3780 \, a \sin \left (\frac {1}{9} \, \arctan \left (\sin \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right ), \cos \left (\frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )\right )\right )} \sqrt {a}}{5040 \, d} \]

input
integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(9/2),x, algorithm="maxima")
 
output
1/5040*sqrt(2)*(3780*a*cos(8/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 
 9/2*c)))*sin(9/2*d*x + 9/2*c) + 1050*a*cos(2/3*arctan2(sin(9/2*d*x + 9/2* 
c), cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 9/2*c) + 378*a*cos(4/9*arctan2(si 
n(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 9/2*c) + 135*a*co 
s(2/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 9 
/2*c) - 3780*a*cos(9/2*d*x + 9/2*c)*sin(8/9*arctan2(sin(9/2*d*x + 9/2*c), 
cos(9/2*d*x + 9/2*c))) - 1050*a*cos(9/2*d*x + 9/2*c)*sin(2/3*arctan2(sin(9 
/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) - 378*a*cos(9/2*d*x + 9/2*c)*sin(4 
/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) - 135*a*cos(9/2*d* 
x + 9/2*c)*sin(2/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) + 
70*a*sin(9/2*d*x + 9/2*c) + 135*a*sin(7/9*arctan2(sin(9/2*d*x + 9/2*c), co 
s(9/2*d*x + 9/2*c))) + 378*a*sin(5/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2 
*d*x + 9/2*c))) + 1050*a*sin(1/3*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x 
 + 9/2*c))) + 3780*a*sin(1/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9 
/2*c))))*sqrt(a)/d
 
3.3.32.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sec \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(9/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.32.9 Mupad [B] (verification not implemented)

Time = 15.70 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.52 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {a\,\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (4830\,\sin \left (c+d\,x\right )+1428\,\sin \left (2\,c+2\,d\,x\right )+513\,\sin \left (3\,c+3\,d\,x\right )+170\,\sin \left (4\,c+4\,d\,x\right )+35\,\sin \left (5\,c+5\,d\,x\right )\right )}{2520\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

input
int((a + a/cos(c + d*x))^(3/2)/(1/cos(c + d*x))^(9/2),x)
 
output
(a*cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x 
))^(1/2)*(4830*sin(c + d*x) + 1428*sin(2*c + 2*d*x) + 513*sin(3*c + 3*d*x) 
 + 170*sin(4*c + 4*d*x) + 35*sin(5*c + 5*d*x)))/(2520*d*(cos(c + d*x) + 1) 
)